Proving That ζ(2) = π2/6 With Your Eyes Closed
“Next time you go clubbing, ask around what’s the sum over k of 1 / k2” once said my math teacher. “You’ll see who’s worth partying with”.
Here’s what you need to know:
\[\zeta(2) = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}\]While Euler was the first to prove the identity in 17401, a handful of other modern approaches have been proposed since then2:
- Using a monotone convergence3
- Using the Jacobian Matrix2
- Using the power series for the inverse sine function4
- Using the L2-completeness of the trigonometric functions2
- Using the convergence of Fourier series2
- Using uniform convergence of a power series on the real line2
- Using an infinite product for the sine function1
- Using the calculus of residues2
- Using cotangente inequalities5
- Using the MacLaurin expansion6
- Using the reduction of integral7
- Using the identity for the Fejér kernel8
- Using Gregory’s formula and infinite limits9
- Using the formula for the number of representations of a positive integer as a sum of four squares10
I was recently reminded of the Jacobian Matrix, let’s use this method for example.
Before beginning
We know that2
\[\frac{3}{4} \zeta(2) = \sum_{n=1}^{\infty} \frac{1}{n^2} - \sum_{m=1}^{\infty}\frac{1}{(2m)^2} = \sum_{r=0}^{\infty} \frac{1}{(2r + 1)^2},\]and that
\[\sum_{r=0}^{\infty} \frac{1}{(2r + 1)^2} = \frac{\pi^2}{8}.\]We also note that
\[\frac{1}{n^2} = \int_{0}^{1}\int_{0}^{1} x^{n-1} y^{n-1} dx\:dy,\]gives
\[\sum_{n=1}^{\infty} \frac{1}{n^2} = \int_{0}^{1}\int_{0}^{1} \frac{dx\:dy}{1-xy}\]by monotonous convergence3.
Off we go
We start considering the monotonous convergence:
\[\sum_{r=0}^{\infty} \frac{1}{(2r + 1)^2} = \int_{0}^{1}\int_{0}^{1} \frac{dx\:dy}{1-x^2y^2}.\]Let’s use the substitution
\[(u, v) = \left( \tan^{-1} x \sqrt{\frac{1-y^2}{1-x^2}}, \tan^{-1} y \sqrt{\frac{1-x^2}{1-y^2}} \right),\]so that
\[(x, y) = \left( \frac{\sin u}{\cos v}, \frac{\sin v}{\cos u} \right).\]The Jacobian matrix is:
\[\begin{align*} \frac{\partial(x, y)}{\partial(u, v)} &= \begin{vmatrix} \cos u / \cos v & \sin u \sin v / \cos^2 v\\ \sin u \sin v / \cos^2u & \cos v / \cos u \end{vmatrix} \\ &= 1- \frac{\sin^2 u \sin^2 v}{\cos^2 u \cos^2 v} \\ &= 1-x^2y^2. \end{align*}\]We get:
\[\frac{3}{4} \zeta(2) = \int\int_{A} du\:dv,\]where
\[A = \{ (u, v) : u \gt 0, \: v \gt 0, \: u+v \lt \pi/2 \}\]has area \( \pi^2/8 \), giving \( \zeta(2) = \pi^2 / 6 \).
-
Euler, Leonhard. “De summis serierum reciprocarum.” Commentarii academiae scientiarum Petropolitanae (1740): 123-134. ↩ ↩2
-
Evaluating ζ(2), Robin Chapman, Department of Mathematics University of Exeter (2003) ↩ ↩2 ↩3 ↩4 ↩5 ↩6 ↩7
-
Apostol, Tom M. “A proof that Euler missed: evaluating ζ (2) the easy way.” The Mathematical Intelligencer 5.3 (1983): 59-60. ↩ ↩2
-
Choe, Boo Rim. “An Elementary Proof of Σn=1 1/n2 = π2/6.” The American Mathematical Monthly 94.7 (1987): 662-663. ↩
-
Apostol, T. “Mathematical Analysis, Addison-Welsey.” Reading, MA 2 (1974). ↩
-
Kortram, R. A. (1996). Simple Proofs for and sin. Mathematics Magazine, 69(2), 122-125. ↩
-
Matsuoka, Yoshio. “An Elementary Proof of the Formula Σk=1 1/k2 = π2/6.” The American Mathematical Monthly 68.5 (1961): 485-487. ↩
-
Stark, E. L. (1969). Another Proof of the Formula Σk=1 1/k2=π2/6. The American Mathematical Monthly, 76(5), 552-553. ↩
-
Borwein, J. M., & Borwein, P. B. (1987). Pi and the AGM: a study in the analytic number theory and computational complexity. Wiley-Interscience. ↩
-
Hua, L. K. (2012). Introduction to number theory. Springer Science & Business Media. ↩
Categories: #math